Autosave: 2022-12-18 14:30:04
This commit is contained in:
parent
aa3ba5196b
commit
c1639194b1
2 changed files with 63 additions and 8 deletions
|
@ -1,9 +1,11 @@
|
||||||
---
|
---
|
||||||
categories:
|
categories:
|
||||||
- Mathematics
|
- Logic
|
||||||
tags: [logic, theorems]
|
tags: [logic, laws]
|
||||||
---
|
---
|
||||||
|
|
||||||
|
# DeMorgan's Laws
|
||||||
|
|
||||||
DeMorgan's laws express some fundamental equivalences that obtain between the Boolean [connectives](Truth-functional%20connectives.md):
|
DeMorgan's laws express some fundamental equivalences that obtain between the Boolean [connectives](Truth-functional%20connectives.md):
|
||||||
|
|
||||||
## First Law
|
## First Law
|
||||||
|
@ -16,14 +18,14 @@ $$
|
||||||
|
|
||||||
The equivalence is demonstrated with the following truth-table
|
The equivalence is demonstrated with the following truth-table
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
## Second Law
|
## Second Law
|
||||||
|
|
||||||
> The negation of a disjunction is equivalent to the conjunction of the negation of the original disjuncts.
|
> The negation of a disjunction is equivalent to the conjunction of the negation of the original disjuncts.
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\sim (P \lor Q) \equiv \sim P & \sim Q
|
\sim (P \lor Q) \equiv \sim P \& \sim Q
|
||||||
$$
|
$$
|
||||||
|
|
||||||

|

|
||||||
|
|
|
@ -6,9 +6,11 @@ tags: [propositional-logic, algebra]
|
||||||
|
|
||||||
# Boolean algebra
|
# Boolean algebra
|
||||||
|
|
||||||
|
## Algebraic laws
|
||||||
|
|
||||||
Many of the laws that obtain in the mathematical realm of algebra also obtain for Boolean expressions.
|
Many of the laws that obtain in the mathematical realm of algebra also obtain for Boolean expressions.
|
||||||
|
|
||||||
## The Commutative Law
|
### The Commutative Law
|
||||||
|
|
||||||
$$
|
$$
|
||||||
x \land y = y \land x \\
|
x \land y = y \land x \\
|
||||||
|
@ -21,7 +23,7 @@ $$
|
||||||
|
|
||||||
Compare the [Commutative Law](/Mathematics/Prealgebra/Whole_numbers.md#the-commutative-property) in the context of arithmetic.
|
Compare the [Commutative Law](/Mathematics/Prealgebra/Whole_numbers.md#the-commutative-property) in the context of arithmetic.
|
||||||
|
|
||||||
## The Associative Law
|
### The Associative Law
|
||||||
|
|
||||||
$$
|
$$
|
||||||
x \land (y \land z) = (x \land y) \land z
|
x \land (y \land z) = (x \land y) \land z
|
||||||
|
@ -33,7 +35,7 @@ $$
|
||||||
|
|
||||||
Compare the [Associative Law](/Mathematics/Prealgebra/Whole_numbers.md#the-associative-property) in the context of arithmetic.
|
Compare the [Associative Law](/Mathematics/Prealgebra/Whole_numbers.md#the-associative-property) in the context of arithmetic.
|
||||||
|
|
||||||
## The Distributive Law
|
### The Distributive Law
|
||||||
|
|
||||||
$$
|
$$
|
||||||
x \land (y \lor z) = (x \land y) \lor (x \land z)
|
x \land (y \lor z) = (x \land y) \lor (x \land z)
|
||||||
|
@ -50,3 +52,54 @@ $$
|
||||||
$$
|
$$
|
||||||
|
|
||||||
In addition we have [DeMorgan's Laws](/Logic/Laws_and_theorems.md/DeMorgan's_Laws.md) which express the relationship that obtains between the negations of conjunctive and disjunctive expressions
|
In addition we have [DeMorgan's Laws](/Logic/Laws_and_theorems.md/DeMorgan's_Laws.md) which express the relationship that obtains between the negations of conjunctive and disjunctive expressions
|
||||||
|
|
||||||
|
## Applying the laws to simplify complex Boolean expressions
|
||||||
|
|
||||||
|
Say we have the following expression:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lnot(\lnot(x) \land \lnot (x \lor y))
|
||||||
|
$$
|
||||||
|
|
||||||
|
We can employ DeMorgan's Laws to convert the second conjunct to a different form:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lnot (x \lor x) = \lnot x \land \lnot y
|
||||||
|
$$
|
||||||
|
|
||||||
|
So now we have:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lnot(\lnot(x) \land (\lnot x \land \lnot y ))
|
||||||
|
$$
|
||||||
|
|
||||||
|
As we have now have an expression of the form _P and (Q and R)_ we can apply the Distributive Law to simplify the brackets (_P and Q and R_):
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lnot( \lnot(x) \land \lnot(x) \land \lnot(y))
|
||||||
|
$$
|
||||||
|
|
||||||
|
Notice that we are repeating ourselves in this reformulation. We have $\lnot(x) \land \lnot(x)$ but this is just the same $\lnot(x)$ by the principle of **idempotence**. So we can reduce to:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lnot(\lnot(x) \land \lnot(y))
|
||||||
|
$$
|
||||||
|
|
||||||
|
This gives our expression the form of the first DeMorgan Law ($\lnot (P \land Q)$), thus we can apply the law ($\lnot P \lor \lnot Q$) to get:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\lnot(\lnot(x)) \lor \lnot(\lnot(y))
|
||||||
|
$$
|
||||||
|
|
||||||
|
Of course now we have two double negatives. We can apply the double negation law to:
|
||||||
|
|
||||||
|
$$
|
||||||
|
x \lor y
|
||||||
|
$$
|
||||||
|
|
||||||
|
// TO DO:
|
||||||
|
|
||||||
|
- Use truth tables to show equivalence
|
||||||
|
- Explicitly add implicit laws
|
||||||
|
- Link to deductive rules
|
||||||
|
- Link to digital circuits and NANDs as universal gates
|
||||||
|
|
Loading…
Add table
Reference in a new issue