Autosave: 2022-12-18 13:30:05
This commit is contained in:
parent
d187579bff
commit
aa3ba5196b
1 changed files with 30 additions and 0 deletions
|
@ -19,4 +19,34 @@ $$
|
|||
x \lor y = y \lor x
|
||||
$$
|
||||
|
||||
Compare the [Commutative Law](/Mathematics/Prealgebra/Whole_numbers.md#the-commutative-property) in the context of arithmetic.
|
||||
|
||||
## The Associative Law
|
||||
|
||||
$$
|
||||
x \land (y \land z) = (x \land y) \land z
|
||||
$$
|
||||
|
||||
$$
|
||||
x \lor (y \lor z) = (x \lor y) \lor z
|
||||
$$
|
||||
|
||||
Compare the [Associative Law](/Mathematics/Prealgebra/Whole_numbers.md#the-associative-property) in the context of arithmetic.
|
||||
|
||||
## The Distributive Law
|
||||
|
||||
$$
|
||||
x \land (y \lor z) = (x \land y) \lor (x \land z)
|
||||
$$
|
||||
|
||||
$$
|
||||
x \lor (y \land z) = (x \lor y) \land (x \lor z)
|
||||
$$
|
||||
|
||||
Compare for instance how this applies in the case of [multiplication](/Mathematics/Prealgebra/Distributivity.md):
|
||||
|
||||
$$
|
||||
a \cdot (b + c) = a \cdot b + a \cdot c
|
||||
$$
|
||||
|
||||
In addition we have [DeMorgan's Laws](/Logic/Laws_and_theorems.md/DeMorgan's_Laws.md) which express the relationship that obtains between the negations of conjunctive and disjunctive expressions
|
||||
|
|
Loading…
Add table
Reference in a new issue