Autosave: 2022-12-17 15:30:04
This commit is contained in:
		
							parent
							
								
									dd8359fb84
								
							
						
					
					
						commit
						fd5a41abe4
					
				
					 34 changed files with 21 additions and 19 deletions
				
			
		| 
						 | 
					@ -1,19 +0,0 @@
 | 
				
			||||||
---
 | 
					 | 
				
			||||||
categories:
 | 
					 | 
				
			||||||
  - Mathematics
 | 
					 | 
				
			||||||
tags: [logic]
 | 
					 | 
				
			||||||
---
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# Boolean functions
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
An example of a Boolean function:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
$$
 | 
					 | 
				
			||||||
f(x,y,z) = (x \land y) \lor (\lnot(x) \land z )
 | 
					 | 
				
			||||||
$$
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
Here is a work through where $f(1, 0, 1)$:
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Insert diagram
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
We can compute all possible outputs of the function by constructing a truth-table with each possible variable value as the
 | 
					 | 
				
			||||||
							
								
								
									
										21
									
								
								Logic/Propositional_logic/Boolean_functions.md
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										21
									
								
								Logic/Propositional_logic/Boolean_functions.md
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,21 @@
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					categories:
 | 
				
			||||||
 | 
					  - Mathematics
 | 
				
			||||||
 | 
					tags: [logic]
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Boolean functions
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					An example of a Boolean function:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					f(x,y,z) = (x \land y) \lor (\lnot(x) \land z )
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Here is a work through where $f(1, 0, 1)$:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- The first disjunction : $ \lnot(x) \land z $ is false because $x$ is 1 and $z$ is 1
 | 
				
			||||||
 | 
					- The second disjunction: $x \land y$ is false because $x$ is 1 and $y$ is 0
 | 
				
			||||||
 | 
					- The overall function returns true because the main connective is disjunction and one of the disjuncts (the second) evaluates to 1. Thus the output is 1.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					We can compute all possible outputs of the function by constructing a truth-table with each possible variable as the truth conditions and the output of the function as the truth value:
 | 
				
			||||||
		Loading…
	
	Add table
		
		Reference in a new issue