64 lines
		
	
	
	
		
			2.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
		
		
			
		
	
	
			64 lines
		
	
	
	
		
			2.1 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								tags:
							 | 
						||
| 
								 | 
							
								  - Mathematics
							 | 
						||
| 
								 | 
							
								  - Prealgebra
							 | 
						||
| 
								 | 
							
								  - fractions
							 | 
						||
| 
								 | 
							
								  - multiplication
							 | 
						||
| 
								 | 
							
								---
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								 > 
							 | 
						||
| 
								 | 
							
								 > To find the product of two fractions $\frac{a}{b}$ and $\frac{c}{d}$ multiply their numerators and denominators and then reduce: $$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## Example
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								\\frac{1}{3} \cdot \frac{2}{5} = \frac{1 \cdot 2}{3 \cdot 5} = \frac{2}{15}
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## Prime factorisation in place
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								The example above did not require a reduction, so here is a more complex example:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								\\frac{14}{15} \cdot \frac{30}{140} = \frac{420}{2100} 
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								It would be laborious to reduce such a large product using factor trees or the repeated application of divisors.  We can use a more efficient method. 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								This method can be applied at the point at which we conduct the multiplication rather than afterwards once we have the product. We express the the initial multiplicands as factors:
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								\\frac{14}{15} \cdot \frac{30}{140} = \frac{(2 \cdot 7) \cdot (2 \cdot 3 \cdot 5) }{(3 \cdot 5) \cdot (2 \cdot  2 \cdot 7 \cdot 5)} 
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								We now have the product in factorised form before we have applied the multiplication so we can go ahead and cancel: 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								\\frac{\cancel{2}, \cancel{7}, \cancel{2}, \cancel{3}, \cancel{5}}{\cancel{3}, \cancel{5}, \cancel{2}, \cancel{2}, \cancel{7}, 5} = \frac{1}{5}
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								**Note that in the above case, there was only a single 5 left as a denominator and no value left as a numerator. This is equivalent to there just being "one five" so we write $\frac{1}{5}$**
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								## Example with negative fractions containing variables
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								*Calculate: $$ - \frac{6x}{55y} \cdot - \frac{110y^2}{105x^2} $$*
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								First multiply in place: 
							 | 
						||
| 
								 | 
							
								$$ 
							 | 
						||
| 
								 | 
							
								\\frac{(3 \cdot 2 \cdot x) \cdot (5  \cdot 2 \cdot 11 \cdot y \cdot y)}{(5 \cdot 11 \cdot y) \cdot (7 \cdot 5 \cdot 3 \cdot x \cdot x)}
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Then cancel: 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$$ 
							 | 
						||
| 
								 | 
							
								\\frac{(\cancel{3} \cdot 2 \cdot \cancel{x}) \cdot (\cancel{5}  \cdot 2 \cdot \cancel{11} \cdot \cancel{y} \cdot y)}{(\cancel{5} \cdot \cancel{11} \cdot \cancel{y}) \cdot (7 \cdot 5 \cdot \cancel{3} \cdot \cancel{x} \cdot x)} = 
							 | 
						||
| 
								 | 
							
								\\frac{2  \cdot 2 \cdot y}{7 \cdot 5 \cdot x}
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Then reduce: 
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								$$
							 | 
						||
| 
								 | 
							
								\\frac{2  \cdot 2 \cdot y}{7 \cdot 5 \cdot x} = \frac{4y}{35x} 
							 | 
						||
| 
								 | 
							
								$$
							 |