eolas/neuron/d0ed26d0-cdc8-4643-8c09-445408195f9b/.neuron/output/Logarithms.html

50 lines
14 KiB
HTML
Raw Normal View History

2024-10-20 19:00:04 +01:00
<!DOCTYPE html><html><head><meta content="text/html; charset=utf-8" http-equiv="Content-Type" /><meta content="width=device-width, initial-scale=1" name="viewport" /><!--replace-start-0--><!--replace-start-5--><!--replace-start-8--><title>Logarithms - My Zettelkasten</title><!--replace-end-8--><!--replace-end-5--><!--replace-end-0--><link href="https://cdn.jsdelivr.net/npm/fomantic-ui@2.8.7/dist/semantic.min.css" rel="stylesheet" /><link href="https://fonts.googleapis.com/css?family=Merriweather|Libre+Franklin|Roboto+Mono&amp;display=swap" rel="stylesheet" /><!--replace-start-1--><!--replace-start-4--><!--replace-start-7--><link href="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" rel="icon" /><meta content="Most simply a logarithm is a way of answering the question:" name="description" /><meta content="Logarithms" property="og:title" /><meta content="My Zettelkasten" property="og:site_name" /><meta content="article" property="og:type" /><meta content="Logarithms" property="neuron:zettel-id" /><meta content="Logarithms" property="neuron:zettel-slug" /><meta content="algebra" property="neuron:zettel-tag" /><script type="application/ld+json">[]</script><style type="text/css">body{background-color:#eeeeee !important;font-family:"Libre Franklin", serif !important}body .ui.container{font-family:"Libre Franklin", serif !important}body h1, h2, h3, h4, h5, h6, .ui.header, .headerFont{font-family:"Merriweather", sans-serif !important}body code, pre, tt, .monoFont{font-family:"Roboto Mono","SFMono-Regular","Menlo","Monaco","Consolas","Liberation Mono","Courier New", monospace !important}body div.z-index p.info{color:#808080}body div.z-index ul{list-style-type:square;padding-left:1.5em}body div.z-index .uplinks{margin-left:0.29999em}body .zettel-content h1#title-h1{background-color:rgba(33,133,208,0.1)}body nav.bottomPane{background-color:rgba(33,133,208,2.0e-2)}body div#footnotes{border-top-color:#2185d0}body p{line-height:150%}body img{max-width:100%}body .deemphasized{font-size:0.94999em}body .deemphasized:hover{opacity:1}body .deemphasized:not(:hover){opacity:0.69999}body .deemphasized:not(:hover) a{color:#808080 !important}body div.container.universe{padding-top:1em}body div.zettel-view ul{padding-left:1.5em;list-style-type:square}body div.zettel-view .pandoc .highlight{background-color:#ffff00}body div.zettel-view .pandoc .ui.disabled.fitted.checkbox{margin-right:0.29999em;vertical-align:middle}body div.zettel-view .zettel-content .metadata{margin-top:1em}body div.zettel-view .zettel-content .metadata div.date{text-align:center;color:#808080}body div.zettel-view .zettel-content h1{padding-top:0.2em;padding-bottom:0.2em;text-align:center}body div.zettel-view .zettel-content h2{border-bottom:solid 1px #4682b4;margin-bottom:0.5em}body div.zettel-view .zettel-content h3{margin:0px 0px 0.4em 0px}body div.zettel-view .zettel-content h4{opacity:0.8}body div.zettel-view .zettel-content div#footnotes{margin-top:4em;border-top-style:groove;border-top-width:2px;font-size:0.9em}body div.zettel-view .zettel-content div#footnotes ol > li > p:only-of-type{display:inline;margin-right:0.5em}body div.zettel-view .zettel-content aside.footnote-inline{width:30%;padding-left:15px;margin-left:15px;float:right;background-color:#d3d3d3}body div.zettel-view .zettel-content .overflows{overflow:auto}body div.zettel-view .zettel-content code{margin:auto auto auto auto;font-size:100%}body div.zettel-view .zettel-content p code, li code, ol code{padding:0.2em 0.2em 0.2em 0.2em;background-color:#f5f2f0}body div.zettel-view .zettel-content pre{overflow:auto}body div.zettel-view .zettel-content dl dt{font-weight:bold}body div.zettel-view .zettel-content blockquote{background-color:#f9f9f9;border-left:solid 10px #cccccc;margin:1.5em 0px 1.5em 0px;padding:0.5em 10px 0.5em 10px}body div.zettel-view .zettel-content.raw{background-color:#dddddd}body .ui.label.zettel-tag{color:#000000}body .ui.label.zettel-tag a{color:#000000}body nav.bottomPane ul.backlinks > li{padding-bottom:0.4em;list-style-type:disc}body nav.bottomPane ul.context-lis
async=""
id="MathJax-script"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"
></script>
<link
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/themes/prism.min.css"
rel="stylesheet"
/><link rel="preconnect" href="https://fonts.googleapis.com" /><link
rel="preconnect"
href="https://fonts.gstatic.com"
crossorigin
/><link
href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans+Condensed:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Serif:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&display=swap"
rel="stylesheet"
/>
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/components/prism-core.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/plugins/autoloader/prism-autoloader.min.js"></script>
<style>
body .ui.container,
body ul {
font-family: "IBM Plex Sans" !important;
}
body blockquote {
border-left-width: 3px !important;
font-style: italic;
}
.headerFont,
.ui.header,
body h1,
h2,
h3,
h4,
h5,
h6 {
font-family: "IBM Plex Sans Condensed" !important;
}
body p {
line-height: 1.4;
}
.monoFont,
body code,
pre,
tt {
font-family: "IBM Plex Mono" !important;
font-size: 12px !important;
line-height: 1.4 !important;
}
</style>
<!--replace-end-7--><!--replace-end-4--><!--replace-end-1--></head><body><div class="ui fluid container universe"><!--replace-start-2--><!--replace-start-3--><!--replace-start-6--><div class="ui text container" id="zettel-container" style="position: relative"><div class="zettel-view"><article class="ui raised attached segment zettel-content"><div class="pandoc"><h1 id="title-h1">Logarithms</h1><p>Most simply a logarithm is a way of answering the question:</p><blockquote><p>How many of one number do we need to get another number. How many of x do we need to get y</p></blockquote><p>More formally:</p><blockquote><p>x raised to what power gives me y</p></blockquote><p>Below is an example of a logarithm:</p><p>$$ \log _{3} 9</p><p>$$</p><p>We read it:</p><blockquote><p>log base 3 of 9</p></blockquote><p>And it means:</p><blockquote><p>3 raised to what power gives me 9?</p></blockquote><p>In this case the answer is easy: <span class="math inline">\(3^2\)</span> gives me nine, which is to say: three multiplied by itself.</p><h2 id="using-exponents-to-calculate-logarithms">Using exponents to calculate logarithms</h2><p>This approach becomes rapidly difficult when working with larger numbers. Its not as obvious what <span class="math inline">\(\log \_{5} 625\)</span> would be using this method. For this reason, we use exponents which are intimately related to logarithms.</p><p>A logarithm can be expressed identically using exponents for example:</p><p>$$ \log _{3} 9 = 2 \leftrightarrow 3^2 = 9</p><p>$$</p><p>By carrying out the conversion in stages, we can work out the answer to the question a logarithm poses.</p><p>Lets work out <span class="math inline">\(\log \_{2} 8\)</span> using this method.</p><ol><li><p>First we add a variable (x) to the expression on the right hand:</p><p>$$ \log _{2} 8 \leftrightarrow x</p><p>$$</p></li><li><p>Next we take the base of the logarithm and combine it with x as an exponent. Now our formula looks like this:</p><p>$$ \log _{2} 8 \leftrightarrow 2^x</p><p>$$</p></li><li><p>Next we add an equals and the number that is left from the logarithm (8):</p></li></ol><p>$$ \log _{2} 8 \leftrightarrow 2^x = 8</p><p>$$</p><p>Then the problem is reduced to: how many times do you need to multiply two by itself to get 8? The answer is 3 : 2 x 2 x 2 or 2 p3. Hence we have the balanced equation:</p><p>$$ \log _{2} 8 \leftrightarrow 2^3 = 8</p><p>$$</p><h2 id="common-base-values">Common base values</h2><p>Often times a base wont be specified in a log expression. For example:</p><p>$$ \log1000</p><p>$$</p><p>This is just a shorthand and it means that the base value is ten, i.e that the logarithm is written in denary (base 10). So the above actually means:</p><p>$$ \log _{10} 1000 = 3</p><p>$$</p><p>This is referred to as the <strong>common logarithm</strong></p><p>Another frequent base is Eulers number (approx. 2.71828) known as the <strong>natural logarithm</strong></p><p>An example</p><p>$$ \log _{e} 7.389 = 2</p><p>$$</p></div></article><nav class="ui attached segment deemphasized backlinksPane" id="neuron-backlinks-pane"><h3 class="ui header">Backlinks</h3><ul class="backlinks"><li><span class="zettel-link-container cf"><span class="zettel-link"><a href="The_History_of_Computing_Swade.html">History of Computing (Swade, 2022 )</a></span></span><ul class="context-list" style="zoom: 85%;"><li class="item"><div class="pandoc">Modern aids to calculation: slide rules following the discovery of <span class="zettel-link-container cf"><span class="zettel-link" title="Zettel: Logarithms"><a href="Logarithms.html">logarithms</a></span></span></div></li></ul></li><li><span class="zettel-link-container cf"><span class="zettel-link"><a href="Memory_addresses.html">Memory addresses</a></span></span><ul class="context-list" style="zoom: 85%;"><li class="item"><div class="pandoc"><p>We need to reverse this formula to find out how many bits we need to represent a given number of addresses. We can do this with a <span class="zettel-link-container cf"><span class="zettel-link" title="Zettel: Logarithms"><a href="L