76 lines
18 KiB
HTML
76 lines
18 KiB
HTML
|
|
<!DOCTYPE html><html><head><meta content="text/html; charset=utf-8" http-equiv="Content-Type" /><meta content="width=device-width, initial-scale=1" name="viewport" /><!--replace-start-0--><!--replace-start-5--><!--replace-start-8--><title>Truth-tables - My Zettelkasten</title><!--replace-end-8--><!--replace-end-5--><!--replace-end-0--><link href="https://cdn.jsdelivr.net/npm/fomantic-ui@2.8.7/dist/semantic.min.css" rel="stylesheet" /><link href="https://fonts.googleapis.com/css?family=Merriweather|Libre+Franklin|Roboto+Mono&display=swap" rel="stylesheet" /><!--replace-start-1--><!--replace-start-4--><!--replace-start-7--><link href="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" rel="icon" /><meta content="We are already familiar with truth-tables from the previous entry on the truth-functional connectives and the relationship between sentences, connectives and the overall truth-value of a sentence. Here we will look in further depth at how to build truth-tables and on their mathematical relation to b" name="description" /><meta content="Truth-tables" property="og:title" /><meta content="My Zettelkasten" property="og:site_name" /><meta content="article" property="og:type" /><meta content="Truth_tables" property="neuron:zettel-id" /><meta content="Truth_tables" property="neuron:zettel-slug" /><meta content="logic" property="neuron:zettel-tag" /><meta content="propositional-logic" property="neuron:zettel-tag" /><script type="application/ld+json">[]</script><style type="text/css">body{background-color:#eeeeee !important;font-family:"Libre Franklin", serif !important}body .ui.container{font-family:"Libre Franklin", serif !important}body h1, h2, h3, h4, h5, h6, .ui.header, .headerFont{font-family:"Merriweather", sans-serif !important}body code, pre, tt, .monoFont{font-family:"Roboto Mono","SFMono-Regular","Menlo","Monaco","Consolas","Liberation Mono","Courier New", monospace !important}body div.z-index p.info{color:#808080}body div.z-index ul{list-style-type:square;padding-left:1.5em}body div.z-index .uplinks{margin-left:0.29999em}body .zettel-content h1#title-h1{background-color:rgba(33,133,208,0.1)}body nav.bottomPane{background-color:rgba(33,133,208,2.0e-2)}body div#footnotes{border-top-color:#2185d0}body p{line-height:150%}body img{max-width:100%}body .deemphasized{font-size:0.94999em}body .deemphasized:hover{opacity:1}body .deemphasized:not(:hover){opacity:0.69999}body .deemphasized:not(:hover) a{color:#808080 !important}body div.container.universe{padding-top:1em}body div.zettel-view ul{padding-left:1.5em;list-style-type:square}body div.zettel-view .pandoc .highlight{background-color:#ffff00}body div.zettel-view .pandoc .ui.disabled.fitted.checkbox{margin-right:0.29999em;vertical-align:middle}body div.zettel-view .zettel-content .metadata{margin-top:1em}body div.zettel-view .zettel-content .metadata div.date{text-align:center;color:#808080}body div.zettel-view .zettel-content h1{padding-top:0.2em;padding-bottom:0.2em;text-align:center}body div.zettel-view .zettel-content h2{border-bottom:solid 1px #4682b4;margin-bottom:0.5em}body div.zettel-view .zettel-content h3{margin:0px 0px 0.4em 0px}body div.zettel-view .zettel-content h4{opacity:0.8}body div.zettel-view .zettel-content div#footnotes{margin-top:4em;border-top-style:groove;border-top-width:2px;font-size:0.9em}body div.zettel-view .zettel-content div#footnotes ol > li > p:only-of-type{display:inline;margin-right:0.5em}body div.zettel-view .zettel-content aside.footnote-inline{width:30%;padding-left:15px;margin-left:15px;float:right;background-color:#d3d3d3}body div.zettel-view .zettel-content .overflows{overflow:auto}body div.zettel-view .zettel-content code{margin:auto auto auto auto;font-size:100%}body div.zettel-view .zettel-content p code, li code, ol code{padding:0.2em 0.2em 0.2em 0.2em;background-color:#f5f2f0}body div.zettel-view .zettel-content pre{overflow:auto}body div.zettel-view .zettel-content dl dt{font-weight:bold}body div.zettel-view .zettel-content blockquote{background-color:#f9f9f9;border-left:solid 10px #cccccc;margi
|
|||
|
|
async=""
|
|||
|
|
id="MathJax-script"
|
|||
|
|
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"
|
|||
|
|
></script>
|
|||
|
|
<link
|
|||
|
|
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/themes/prism.min.css"
|
|||
|
|
rel="stylesheet"
|
|||
|
|
/><link rel="preconnect" href="https://fonts.googleapis.com" /><link
|
|||
|
|
rel="preconnect"
|
|||
|
|
href="https://fonts.gstatic.com"
|
|||
|
|
crossorigin
|
|||
|
|
/><link
|
|||
|
|
href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans+Condensed:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Serif:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&display=swap"
|
|||
|
|
rel="stylesheet"
|
|||
|
|
/>
|
|||
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/components/prism-core.min.js"></script>
|
|||
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/plugins/autoloader/prism-autoloader.min.js"></script>
|
|||
|
|
<style>
|
|||
|
|
body .ui.container,
|
|||
|
|
body ul {
|
|||
|
|
font-family: "IBM Plex Sans" !important;
|
|||
|
|
}
|
|||
|
|
body blockquote {
|
|||
|
|
border-left-width: 3px !important;
|
|||
|
|
font-style: italic;
|
|||
|
|
}
|
|||
|
|
.headerFont,
|
|||
|
|
.ui.header,
|
|||
|
|
body h1,
|
|||
|
|
h2,
|
|||
|
|
h3,
|
|||
|
|
h4,
|
|||
|
|
h5,
|
|||
|
|
h6 {
|
|||
|
|
font-family: "IBM Plex Sans Condensed" !important;
|
|||
|
|
}
|
|||
|
|
body p {
|
|||
|
|
line-height: 1.4;
|
|||
|
|
}
|
|||
|
|
.monoFont,
|
|||
|
|
body code,
|
|||
|
|
pre,
|
|||
|
|
tt {
|
|||
|
|
font-family: "IBM Plex Mono" !important;
|
|||
|
|
font-size: 12px !important;
|
|||
|
|
line-height: 1.4 !important;
|
|||
|
|
}
|
|||
|
|
</style>
|
|||
|
|
<!--replace-end-7--><!--replace-end-4--><!--replace-end-1--></head><body><div class="ui fluid container universe"><!--replace-start-2--><!--replace-start-3--><!--replace-start-6--><div class="ui text container" id="zettel-container" style="position: relative"><div class="zettel-view"><article class="ui raised attached segment zettel-content"><div class="pandoc"><h1 id="title-h1">Truth-tables</h1><p>We are already familiar with truth-tables from the previous entry on the <em>truth-functional connectives</em> and the relationship between sentences, connectives and the overall truth-value of a sentence. Here we will look in further depth at how to build truth-tables and on their mathematical relation to binary truth-values. We will also look at examples of complex truth-tables for large compound expressions and the systematic steps we follow to derive the truth conditions of compound sentences from their simple constituents.</p><h2 id="formulae-for-constructing-truth-tables">Formulae for constructing truth-tables</h2><p>For any truth-table, the number of rows it will contain is equal to <span class="math inline">\(2n\)</span> where:</p><ul><li><span class="math inline">\(n\)</span> stands for the number of sentences</li><li><span class="math inline">\(2\)</span> is the total number of possible truth values that the sentence may have: true or false.</li></ul><p>When we count the number of sentences, we mean atomic sentences. And we only count each sentence once. Hence for a compound sentence of the form <span class="math inline">\((\sim B \supset C) & (A \equiv B)\)</span>, <span class="math inline">\(B\)</span> occurs twice but there are only three sentences: <span class="math inline">\(A\)</span>, <span class="math inline">\(B\)</span>, and <span class="math inline">\(C\)</span>.</p><p>Thus for the sentence <span class="math inline">\(P & Q\)</span> ,we have two sentences so <span class="math inline">\(n\)</span> is 2 which equals 4 rows (2 x 2):</p><pre><code class="language-none">P Q P & Q
|
|||
|
|
T T T
|
|||
|
|
T F F
|
|||
|
|
F T F
|
|||
|
|
F F F</code></pre><p>For the sentence <span class="math inline">\((P \lor Q) & R\)</span> we have three sentences so <span class="math inline">\(n\)</span> is 3 which equals 8 rows (2 x 2 x 2):</p><pre><code class="language-none">P Q R ( P ∨ Q ) & R
|
|||
|
|
T T T T
|
|||
|
|
T T F F
|
|||
|
|
T F T T
|
|||
|
|
T F F F
|
|||
|
|
F T T T
|
|||
|
|
F T F F
|
|||
|
|
F F T F
|
|||
|
|
F F F F</code></pre><p>For the single sentence <span class="math inline">\(P\)</span> we have one sentence so <span class="math inline">\(n\)</span> is 1 which equals 2 rows (2 x 1):</p><pre><code class="language-none">P P
|
|||
|
|
T T
|
|||
|
|
F F</code></pre><p>This tells us how many rows the truth-table should have but it doesn’t tell us what each row should consist in. In other words: how many Ts and Fs it should contain. This is fine with simple truth-tables since we can just alternate each value but for truth-tables with three sentences and more it is easy to make mistakes.</p><p>To simplify this and ensure that we are including the right number of possible truth-values we can extend the formula to <span class="math inline">\(2n^-i\)</span>. This formula tells us how many groups of T and F we should have in each column.</p><p>We can already see that there is a pattern at work by looking at the columns of the truth tables above. If we take the sentence <span class="math inline">\((P \lor Q) & R\)</span> we can see that for each sentence:</p><ul><li><span class="math inline">\(P\)</span> consists in two sets of <span class="math inline">\({\textsf{T,T,T,T}}\)</span> and <span class="math inline">\({\textsf{F,F,F,F}}\)</span> with <strong>four</strong> elements per set</li><li><span class="math inline">\(Q\)</span> consists in four sets of <span class="math inline">\({\textsf{T,T}}\)</span> , <span class="math inline">\({\textsf{F,F}}\)</span>, <span class="math inline">\({\textsf{T,T}}\)</span> , <span class="math inline">\({\textsf{F,F}}\)</span> with <strong>two</strong> elements per set</li><li><span class="math inline">\(R\)</span> consists in eight sets of <span class="math inline">\({\textsf{T}}\)</span>, <span class="math inline">\({\textsf{F}}\)</span>, <span class="math inline">\({\textsf{T}}\)</span>, <span class="math inline">\({\textsf{F}}\)</span>, <span class="math inline">\({\textsf{T}}\)</span>, <span class="math inline">\({\textsf{F}}\)</span>, <span class="math inline">\({\textsf{T}}\)</span>, <span class="math inline">\({\textsf{F}}\)</span> with <strong>one</strong> element per set.</li></ul><p>If we work through the formula we see that it returns 4, 2, 1:</p><p><span class="math display">$$\begin{equation} \begin{split} 2n^-1 = 3 -1 \\ = 2 \\ = 2 \cdot 2 \\ = 4 \end{split} \end{equation}$$</span></p><p><span class="math display">$$
|
|||
|
|
\\begin{equation} \begin{split} 2n^-2 = 3 - 2 \\ = 1 \\ = 2 \cdot 1 \\ = 2 \end{split} \end{equation}
|
|||
|
|
$$</span></p><p><span class="math display">$$
|
|||
|
|
\\begin{equation} \begin{split} 2n^-3 = 3 - 3 \\ = 0 \\ = 2 \cdot 0 \\ = 1 \end{split} \end{equation}
|
|||
|
|
$$</span></p><h2 id="truth-table-concepts">Truth-table concepts</h2><h3 id="recursion">Recursion</h3><p>When we move to complex truth-tables with more than one connective we realise that truth-tables are recursive. The truth-tables for the truth-functional connectives provide all that we need to determine the truth-values of complex sentences:</p><blockquote><p>The core truth-tables tell us how to determine the truth-value of a molecular sentence given the truth-values of its <a href="Syntax%20of%20sentential%20logic.md">immediate sentential components</a>. And if the immediate sentential components of a molecular sentence are also molecular, we can use the information in the characteristic truth-tables to determine how the truth-value of each immediate component depends n the truth-values of <em>its</em> components and so on.</p></blockquote><h3 id="truth-value-assignment">Truth-value assignment</h3><blockquote><p>A truth-value assignment is an assignment of truth-values (either T or F) to the atomic sentences of SL.</p></blockquote><p>When working on complex truth tables, we use the truth-assignment of atomic sentences to count as the values that we feed into the larger expressions at a higher level of the sentential abstraction.</p><h3 id="partial-assignment">Partial assignment</h3><p>We talk about partial assignments of truth-values when we look at one specific row of the truth-table, independently of the others. The total set of partial assignments comprise all possible truth assignments for the given sentence.</p><h2 id="working-through-complex-truth-tables">Working through complex truth-tables</h2><p>The truth-table below shows all truth-value assignments for the sentence <span class="math inline">\((\sim B \supset C) & (A \equiv B)\)</span> :</p><pre><code class="language-none">A B C ( ~ B ⊃ C ) & ( A ≡ B )
|
|||
|
|
T T T F T T T T T T T
|
|||
|
|
T T F F T T F T T T T
|
|||
|
|
T F T T F T T F T F F
|
|||
|
|
T F F T F F F F T F F
|
|||
|
|
F T T F T T T F F F T
|
|||
|
|
F T F F T T F F F F T
|
|||
|
|
F F T T F T T T F T F
|
|||
|
|
F F F T F F F F F T F</code></pre><p>As with algebra we work outwards from each set of brackets. The sequence for manually arriving at the above table would be roughly as follows:</p><ol><li>For each sentence letter, copy the truth value for it in each row.</li><li>Identify the connectives in the atomic sentences and the main overall sentence.</li><li>Work out the truth-values for the smallest connectives and sub-compound sentences. The first should always be negation and then the other atomic connectives.</li><li>Feed-in the truth-values of the atomic sentences as values into the main connective, through a process of elimination you then reach the core truth-assignments:</li></ol></div></article><nav class="ui attached segment deemphasized bottomPane" id="neuron-tags-pane"><div><span class="ui basic label zettel-tag" title="Tag">logic</span><span class="ui basic label zettel-tag" title="Tag">propositional-logic</span></div></nav><nav class="ui bottom attached icon compact inverted menu blue" id="neuron-nav-bar"><!--replace-start-9--><!--replace-end-9--><a class="right item" href="impulse.html" title="Open Impulse"><i class="wave square icon"></i></a></nav></div></div><!--replace-end-6--><!--replace-end-3--><!--replace-end-2--><div class="ui center aligned container footer-version"><div class="ui tiny image"><a href="https://neuron.zettel.page"><img alt="logo" src="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" title="Generated by Neuron 1.9.35.3" /></a></div></div></div></body></html>
|