51 lines
22 KiB
HTML
51 lines
22 KiB
HTML
|
|
<!DOCTYPE html><html><head><meta content="text/html; charset=utf-8" http-equiv="Content-Type" /><meta content="width=device-width, initial-scale=1" name="viewport" /><!--replace-start-0--><!--replace-start-5--><!--replace-start-8--><title>Electromagnetism - My Zettelkasten</title><!--replace-end-8--><!--replace-end-5--><!--replace-end-0--><link href="https://cdn.jsdelivr.net/npm/fomantic-ui@2.8.7/dist/semantic.min.css" rel="stylesheet" /><link href="https://fonts.googleapis.com/css?family=Merriweather|Libre+Franklin|Roboto+Mono&display=swap" rel="stylesheet" /><!--replace-start-1--><!--replace-start-4--><!--replace-start-7--><link href="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" rel="icon" /><meta content="Electromagnetism is the physical interaction among electric charges, magnetic moments and the electromagnetic field." name="description" /><meta content="Electromagnetism" property="og:title" /><meta content="My Zettelkasten" property="og:site_name" /><meta content="article" property="og:type" /><meta content="Electromagnetism" property="neuron:zettel-id" /><meta content="Electromagnetism" property="neuron:zettel-slug" /><meta content="electricity" property="neuron:zettel-tag" /><meta content="electromagnetism" property="neuron:zettel-tag" /><meta content="physics" property="neuron:zettel-tag" /><script type="application/ld+json">[]</script><style type="text/css">body{background-color:#eeeeee !important;font-family:"Libre Franklin", serif !important}body .ui.container{font-family:"Libre Franklin", serif !important}body h1, h2, h3, h4, h5, h6, .ui.header, .headerFont{font-family:"Merriweather", sans-serif !important}body code, pre, tt, .monoFont{font-family:"Roboto Mono","SFMono-Regular","Menlo","Monaco","Consolas","Liberation Mono","Courier New", monospace !important}body div.z-index p.info{color:#808080}body div.z-index ul{list-style-type:square;padding-left:1.5em}body div.z-index .uplinks{margin-left:0.29999em}body .zettel-content h1#title-h1{background-color:rgba(33,133,208,0.1)}body nav.bottomPane{background-color:rgba(33,133,208,2.0e-2)}body div#footnotes{border-top-color:#2185d0}body p{line-height:150%}body img{max-width:100%}body .deemphasized{font-size:0.94999em}body .deemphasized:hover{opacity:1}body .deemphasized:not(:hover){opacity:0.69999}body .deemphasized:not(:hover) a{color:#808080 !important}body div.container.universe{padding-top:1em}body div.zettel-view ul{padding-left:1.5em;list-style-type:square}body div.zettel-view .pandoc .highlight{background-color:#ffff00}body div.zettel-view .pandoc .ui.disabled.fitted.checkbox{margin-right:0.29999em;vertical-align:middle}body div.zettel-view .zettel-content .metadata{margin-top:1em}body div.zettel-view .zettel-content .metadata div.date{text-align:center;color:#808080}body div.zettel-view .zettel-content h1{padding-top:0.2em;padding-bottom:0.2em;text-align:center}body div.zettel-view .zettel-content h2{border-bottom:solid 1px #4682b4;margin-bottom:0.5em}body div.zettel-view .zettel-content h3{margin:0px 0px 0.4em 0px}body div.zettel-view .zettel-content h4{opacity:0.8}body div.zettel-view .zettel-content div#footnotes{margin-top:4em;border-top-style:groove;border-top-width:2px;font-size:0.9em}body div.zettel-view .zettel-content div#footnotes ol > li > p:only-of-type{display:inline;margin-right:0.5em}body div.zettel-view .zettel-content aside.footnote-inline{width:30%;padding-left:15px;margin-left:15px;float:right;background-color:#d3d3d3}body div.zettel-view .zettel-content .overflows{overflow:auto}body div.zettel-view .zettel-content code{margin:auto auto auto auto;font-size:100%}body div.zettel-view .zettel-content p code, li code, ol code{padding:0.2em 0.2em 0.2em 0.2em;background-color:#f5f2f0}body div.zettel-view .zettel-content pre{overflow:auto}body div.zettel-view .zettel-content dl dt{font-weight:bold}body div.zettel-view .zettel-content blockquote{background-color:#f9f9f9;border-left:solid 10px #cccccc;margin:1.5em 0px 1.5em 0px;padding:0.5em 10px 0.5em 10px}body div.zettel-view .zettel-content.raw{background-color:
|
|||
|
|
async=""
|
|||
|
|
id="MathJax-script"
|
|||
|
|
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"
|
|||
|
|
></script>
|
|||
|
|
<link
|
|||
|
|
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/themes/prism.min.css"
|
|||
|
|
rel="stylesheet"
|
|||
|
|
/><link rel="preconnect" href="https://fonts.googleapis.com" /><link
|
|||
|
|
rel="preconnect"
|
|||
|
|
href="https://fonts.gstatic.com"
|
|||
|
|
crossorigin
|
|||
|
|
/><link
|
|||
|
|
href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans+Condensed:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Serif:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&display=swap"
|
|||
|
|
rel="stylesheet"
|
|||
|
|
/>
|
|||
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/components/prism-core.min.js"></script>
|
|||
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/plugins/autoloader/prism-autoloader.min.js"></script>
|
|||
|
|
<style>
|
|||
|
|
body .ui.container,
|
|||
|
|
body ul {
|
|||
|
|
font-family: "IBM Plex Sans" !important;
|
|||
|
|
}
|
|||
|
|
body blockquote {
|
|||
|
|
border-left-width: 3px !important;
|
|||
|
|
font-style: italic;
|
|||
|
|
}
|
|||
|
|
.headerFont,
|
|||
|
|
.ui.header,
|
|||
|
|
body h1,
|
|||
|
|
h2,
|
|||
|
|
h3,
|
|||
|
|
h4,
|
|||
|
|
h5,
|
|||
|
|
h6 {
|
|||
|
|
font-family: "IBM Plex Sans Condensed" !important;
|
|||
|
|
}
|
|||
|
|
body p {
|
|||
|
|
line-height: 1.4;
|
|||
|
|
}
|
|||
|
|
.monoFont,
|
|||
|
|
body code,
|
|||
|
|
pre,
|
|||
|
|
tt {
|
|||
|
|
font-family: "IBM Plex Mono" !important;
|
|||
|
|
font-size: 12px !important;
|
|||
|
|
line-height: 1.4 !important;
|
|||
|
|
}
|
|||
|
|
</style>
|
|||
|
|
<!--replace-end-7--><!--replace-end-4--><!--replace-end-1--></head><body><div class="ui fluid container universe"><!--replace-start-2--><!--replace-start-3--><!--replace-start-6--><div class="ui text container" id="zettel-container" style="position: relative"><div class="zettel-view"><article class="ui raised attached segment zettel-content"><div class="pandoc"><h1 id="title-h1">Electromagnetism</h1><blockquote><p>Electromagnetism is the physical interaction among <strong>electric charges, magnetic moments and the electromagnetic field</strong>.</p></blockquote><p>For a long time electricity and magnetism were thought to be separate forces. In the 19th century Maxwell demonstrated that they were interrelated phenomena then Einstein proved with the Special Theory of Relativity that they are aspects of one unified phenomenon.</p><p>The core of the relationship is that a changing magnetic field produces an electric field and conversely, a changing electric field produces a magnetic field.</p><h2 id="electric-charge">Electric charge</h2><p>We know that charge is an innate property of all charged fundamental particles. If a particle is charged it has a positive or negative charge. The most common charged particles in the universe are negatively charged electrons or positively charged protons. When charged particles are moving, they are known as electric currents.</p><h2 id="magnetism">Magnetism</h2><blockquote><p>Magnetism is a physical property produced by the <em>motion</em> of electric charge, which of course, is the same thing as <span class="zettel-link-container cf"><span class="zettel-link" title="Zettel: Current"><a href="Current.html">electric current</a></span></span></p></blockquote><p>A <strong>magnet</strong> is a material or object that produces a magnetic field. This field is invisible but visible by its effects: pulling on other magnetic materials such as iron, steel, nickel, cobalt etc and attracting or repelling other magnets.</p><p>All magnets have two ends where their magnetic effects are strongest. These regions are called the <strong>poles</strong> of the magnet. Materials can be <em>magnetic</em> but they are not <em>magnetized</em> until another magnetic material has entered into their field. At this point, the attraction and repulsion behaviour can be observed.</p><p>This behaviour is a function of the <strong>magnetic force</strong> which is <strong><em>transmitted</em></strong> via the <strong>magnetic field</strong>.</p><h3 id="relation-to-electrons">Relation to electrons</h3><p>Magnetism, understood as the effect of a magnetic field, arises from the properties of the electrons in an atom. We know that atoms ‘orbit’ the nucleus of the atom but as they circle the nucleus they also spin or rotate on their own axis.</p><p>As they spin they produce a <strong>magnetic dipole</strong>: the two poles noted above. We call this propensity of electrons the <strong>intrinsic magnetic moment</strong> of the electron. It is aggregates of these miniature magnetic behaviours that produce the overall magnetic property of the material.</p><p><img src="/static/dipole-again.svg" /></p><p>In most materials, equal numbers of electrons spin in opposite directions. As a result, their magentic effects are cancelled out. However <strong>in strongly magnetic materials an overall majority of electrons spin in one particular direction</strong>. This breaks the equilibrium and produces the magnetic field.</p><p>If you have material A where the electrons all spin in one direction and material B where the electrons all spin in a direction opposite to A, then B will be attracted to A and you can observe the effects of the magnetic force in action.</p><h2 id="fields-and-forces">Fields and forces</h2><h3 id="what-is-a-force-in-physics">What is a force in physics?</h3><p>At its most abstract, divorced from the specific types of force, a force is <strong>an influence that can change the motion of an object</strong>. It is an external agent capable of changing the velocity of a body with mass. A force has both a magnitude and a d
|
|||
|
|
<h2 id="the-electromagnetic-field">The electromagnetic field</h2><p>Although we have described the electric and magnetic fields separately, they are in fact a single unified and inseparable field created by charged particles and particles with a magentic moment. In describing electricity and magnetism we have focusing on different attributes of the same phenomenon.</p><p>The electromagnetic field does not carry charge or magnetic moment, it carries energy and momentum. This energy and momentum can be transferred to charged particles and particles with magnetic moment.</p><h3 id="maxwells-equations">Maxwell’s Equations</h3><p>The equations express four laws that offer a complete account of the electromagnetic field. The equations integrate separate discoveries and laws identified by other scientists with a common mathematical representation. This is why they are not called ‘Maxwell’s Laws’ since he didn’t originate the laws, he unified them into a common expression. These collective laws capture everything we have discussed so far in relation to electric and magnetic fields.</p><ol><li>An electrically charged particle creates an electric field. (Gauss’ Law for Electricity)</li><li>Magnetically charged particles do not exist. (Gauss’ Law for Magentism)</li><li>A changing magnetic field creates an electric field. (Faraday’s Law of Induction)</li><li>A changing electric field creates a magnetic field. (Ampere’s Law)</li></ol><h2 id="the-electromagnetic-force">The electromagnetic force</h2><p>Maxwell’s Equations describe how electromagnetic fields are generated and behave but they don’t specify how the fields interact with charged particles. An account of this is provided by Lorentz’s force law which specifies what we have already described above:</p><blockquote><p>An electric field exerts a forward or backward force on a charged particle and a magnetic field exerts a sideways/perpendicular force on a moving charged particle.</p></blockquote><h2 id="electromagnetic-radiation--waves">Electromagnetic radiation / waves</h2><blockquote><p>Electromagnetic radiation consists in waves of the electromagnetic field propagating through space carrying electromagnetic radiant energy.</p></blockquote><p>Electromagnetic waves consist of rapidly changing electric and magnetic fields. They are emitted any time an electrically charged particle accelerates. These waves are generally referred to as light. However, more accurately, ‘light’ refers to the types of electromagnetic wave that we can see. Electromagnetic waves form a spectrum based on their frequency and wavelength. For example, ‘radio waves’ are low-frequency / long wavelength electromagnetic waves and gamma rays are high-frequency / short wavelength waves:</p><p><img src="/static/em-spectrum.jpg" /></p><p>The image below shows the propagation of an electromagnetic wave through space. We can identify the core components as follows</p><ul><li>The vector of the magnetic field <span class="math inline">\(B\)</span> propagates outwards along the <span class="math inline">\(z\)</span> axis</li><li>The magenetic field is perpendicular to the vector of the electric field <span class="math inline">\(E\)</span> which propagates upward along the <span class="math inline">\(y\)</span> axis</li><li>The directionality of both waves is forward along the <span class="math inline">\(x\)</span> axis</li></ul><p><img src="/static/em-wave.gif" /></p><h2 id="using-magnetism-to-generate-electricity">Using magnetism to generate electricity</h2><h2 id="understand-better">Understand better:</h2><ul><li>How do EM waves relate to simple electrical circuits.</li><li>Link discussion here to discussion of Hertz</li></ul><p><a href="https://www.britannica.com/science/electromagnetism/Coulombs-law">https://www.britannica.com/science/electromagnetism/Coulombs-law</a></p></div></article><nav class="ui attached segment deemphasized backlinksPane" id="neuron-backlinks-pane"><h3 class="ui header">Backlinks</h3><ul class="backlinks"><li><span class="zettel-link-container cf"><span class=
|