eolas/neuron/d0ed26d0-cdc8-4643-8c09-445408195f9b/.neuron/output/Boolean_function_synthesis.html

62 lines
17 KiB
HTML
Raw Normal View History

2024-10-20 19:00:04 +01:00
<!DOCTYPE html><html><head><meta content="text/html; charset=utf-8" http-equiv="Content-Type" /><meta content="width=device-width, initial-scale=1" name="viewport" /><!--replace-start-0--><!--replace-start-5--><!--replace-start-8--><title>Boolean function synthesis - My Zettelkasten</title><!--replace-end-8--><!--replace-end-5--><!--replace-end-0--><link href="https://cdn.jsdelivr.net/npm/fomantic-ui@2.8.7/dist/semantic.min.css" rel="stylesheet" /><link href="https://fonts.googleapis.com/css?family=Merriweather|Libre+Franklin|Roboto+Mono&amp;display=swap" rel="stylesheet" /><!--replace-start-1--><!--replace-start-4--><!--replace-start-7--><link href="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" rel="icon" /><meta content="When we looked at boolean functions we were working in a particular direction: from a function to a truth table. When we do Boolean function synthesis we work in the opposite direction: from a truth table to a function." name="description" /><meta content="Boolean function synthesis" property="og:title" /><meta content="My Zettelkasten" property="og:site_name" /><meta content="article" property="og:type" /><meta content="Boolean_function_synthesis" property="neuron:zettel-id" /><meta content="Boolean_function_synthesis" property="neuron:zettel-slug" /><meta content="logic" property="neuron:zettel-tag" /><meta content="nand-to-tetris" property="neuron:zettel-tag" /><meta content="propositional-logic" property="neuron:zettel-tag" /><script type="application/ld+json">[]</script><style type="text/css">body{background-color:#eeeeee !important;font-family:"Libre Franklin", serif !important}body .ui.container{font-family:"Libre Franklin", serif !important}body h1, h2, h3, h4, h5, h6, .ui.header, .headerFont{font-family:"Merriweather", sans-serif !important}body code, pre, tt, .monoFont{font-family:"Roboto Mono","SFMono-Regular","Menlo","Monaco","Consolas","Liberation Mono","Courier New", monospace !important}body div.z-index p.info{color:#808080}body div.z-index ul{list-style-type:square;padding-left:1.5em}body div.z-index .uplinks{margin-left:0.29999em}body .zettel-content h1#title-h1{background-color:rgba(33,133,208,0.1)}body nav.bottomPane{background-color:rgba(33,133,208,2.0e-2)}body div#footnotes{border-top-color:#2185d0}body p{line-height:150%}body img{max-width:100%}body .deemphasized{font-size:0.94999em}body .deemphasized:hover{opacity:1}body .deemphasized:not(:hover){opacity:0.69999}body .deemphasized:not(:hover) a{color:#808080 !important}body div.container.universe{padding-top:1em}body div.zettel-view ul{padding-left:1.5em;list-style-type:square}body div.zettel-view .pandoc .highlight{background-color:#ffff00}body div.zettel-view .pandoc .ui.disabled.fitted.checkbox{margin-right:0.29999em;vertical-align:middle}body div.zettel-view .zettel-content .metadata{margin-top:1em}body div.zettel-view .zettel-content .metadata div.date{text-align:center;color:#808080}body div.zettel-view .zettel-content h1{padding-top:0.2em;padding-bottom:0.2em;text-align:center}body div.zettel-view .zettel-content h2{border-bottom:solid 1px #4682b4;margin-bottom:0.5em}body div.zettel-view .zettel-content h3{margin:0px 0px 0.4em 0px}body div.zettel-view .zettel-content h4{opacity:0.8}body div.zettel-view .zettel-content div#footnotes{margin-top:4em;border-top-style:groove;border-top-width:2px;font-size:0.9em}body div.zettel-view .zettel-content div#footnotes ol > li > p:only-of-type{display:inline;margin-right:0.5em}body div.zettel-view .zettel-content aside.footnote-inline{width:30%;padding-left:15px;margin-left:15px;float:right;background-color:#d3d3d3}body div.zettel-view .zettel-content .overflows{overflow:auto}body div.zettel-view .zettel-content code{margin:auto auto auto auto;font-size:100%}body div.zettel-view .zettel-content p code, li code, ol code{padding:0.2em 0.2em 0.2em 0.2em;background-color:#f5f2f0}body div.zettel-view .zettel-content pre{overflow:auto}body div.zettel-view .zettel-content dl dt{font-weight:bold}body div.zettel-view .zettel-content blockquote{background-color:#f9f9f9
async=""
id="MathJax-script"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"
></script>
<link
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/themes/prism.min.css"
rel="stylesheet"
/><link rel="preconnect" href="https://fonts.googleapis.com" /><link
rel="preconnect"
href="https://fonts.gstatic.com"
crossorigin
/><link
href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans+Condensed:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Serif:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&display=swap"
rel="stylesheet"
/>
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/components/prism-core.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/plugins/autoloader/prism-autoloader.min.js"></script>
<style>
body .ui.container,
body ul {
font-family: "IBM Plex Sans" !important;
}
body blockquote {
border-left-width: 3px !important;
font-style: italic;
}
.headerFont,
.ui.header,
body h1,
h2,
h3,
h4,
h5,
h6 {
font-family: "IBM Plex Sans Condensed" !important;
}
body p {
line-height: 1.4;
}
.monoFont,
body code,
pre,
tt {
font-family: "IBM Plex Mono" !important;
font-size: 12px !important;
line-height: 1.4 !important;
}
</style>
<!--replace-end-7--><!--replace-end-4--><!--replace-end-1--></head><body><div class="ui fluid container universe"><!--replace-start-2--><!--replace-start-3--><!--replace-start-6--><div class="ui text container" id="zettel-container" style="position: relative"><div class="zettel-view"><article class="ui raised attached segment zettel-content"><div class="pandoc"><h1 id="title-h1">Boolean function synthesis</h1><p>When we looked at <span class="zettel-link-container cf"><span class="zettel-link" title="Zettel: Boolean functions"><a href="Boolean_functions.html">boolean functions</a></span></span> we were working in a particular direction: from a function to a truth table. When we do Boolean function synthesis we work in the opposite direction: from a truth table to a function.</p><p>This is an important skill that we will use when constructing <span class="zettel-link-container errors"><span class="zettel-link" title="Wiki-link does not refer to any existing zettel"><a>Digital_circuits</a></span></span>. We will go from truth conditions (i.e. what we want the circuit to do and when we want it to do it) to a function expression which is then reduced to its simplest form and implemented with <span class="zettel-link-container cf"><span class="zettel-link" title="Zettel: Logic gates"><a href="Logic_gates.html">logic gates</a></span></span>. Specifically, NAND gates.</p><p>We will show here that a complex logical expression can be reduced to an equivalent expression that uses only the NAND operator.</p><h2 id="the-process">The process</h2><p>The process proceeds as follows:</p><ol><li>Work out the truth conditions for the circuit we want to construct</li><li>Identify the rows where the output is equal to 1</li><li>For each of these rows construct a Boolean expression that evaluates to that output</li><li>Join each expression with OR</li><li>Reduce these expressions to a single expression in its simplest form</li></ol><h2 id="example">Example</h2><p>Lets say we have the following truth table:</p><table class="ui table"><thead><tr><th>Line</th><th><span class="math inline">\(x\)</span></th><th><span class="math inline">\(y\)</span></th><th><span class="math inline">\(z\)</span></th><th><span class="math inline">\(f\)</span></th></tr></thead><tbody><tr><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>2</td><td>0</td><td>0</td><td>1</td><td>0</td></tr><tr><td>3</td><td>0</td><td>1</td><td>0</td><td>1</td></tr><tr><td>4</td><td>0</td><td>1</td><td>1</td><td>0</td></tr><tr><td>5</td><td>1</td><td>0</td><td>0</td><td>1</td></tr><tr><td>6</td><td>1</td><td>0</td><td>1</td><td>0</td></tr><tr><td>7</td><td>1</td><td>1</td><td>0</td><td>0</td></tr><tr><td>8</td><td>1</td><td>1</td><td>1</td><td>0</td></tr></tbody></table><p>We only need to focus on lines 1, 3, and 5 since they have the output 1:</p><table class="ui table"><thead><tr><th>Line</th><th><span class="math inline">\(x\)</span></th><th><span class="math inline">\(y\)</span></th><th><span class="math inline">\(z\)</span></th><th><span class="math inline">\(f\)</span></th></tr></thead><tbody><tr><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td></tr><tr><td>3</td><td>0</td><td>1</td><td>0</td><td>1</td></tr><tr><td>5</td><td>1</td><td>0</td><td>0</td><td>1</td></tr></tbody></table><p>For each line we construct a Boolean expression that would result in the value in the <span class="math inline">\(f\)</span> column. In other words we construct the function:</p><table class="ui table"><thead><tr><th>Line</th><th><span class="math inline">\(x\)</span></th><th><span class="math inline">\(y\)</span></th><th><span class="math inline">\(z\)</span></th><th><span class="math inline">\(f\)</span></th></tr></thead><tbody><tr><td>1</td><td>0</td><td>0</td><td>0</td><td><span class="math inline">\(\lnot(x) \land \lnot (y) \land \lnot(z)\)</span></td></tr><tr><td>3</td><td>0</td><td>1</td><td>0</td><td><span class="math inline">\(\lnot(x) \land y \land \lnot(z)\)</span></td></tr><tr><td>5</td><td>1</td><td>0</td><td>0</td><td><span class="math inline">\(x \land \lnot(y) \land
(\lnot(x) \land \lnot (y) \land \lnot(z)) \\ \lor \\ (\lnot(x) \land y \land \lnot(z)) \\ \lor \\ (x \land \lnot(y) \land \lnot(z))
$$</span></p><p>Its clear that we have transcribed the truth conditions accurately but that we are doing so in a rather verbose way. We can simplify by just looking at the position of the 1s in the truth table. Notice:</p><ul><li><span class="math inline">\(z\)</span> is always 0</li><li><span class="math inline">\(x\)</span> and <span class="math inline">\(y\)</span> are either 0 or 1 but never both 1 in the same row</li></ul><p>So we simplify:</p><p><span class="math display">$$
(\lnot(x) \land \lnot(z)) \lor (\lnot(y) \land \lnot(z))
$$</span></p><p>Notice that <span class="math inline">\(\lnot(z)\)</span> is repeated so we can remove the repetition through <a href="Boolean_algebra.md#idempotent-law">idempotence</a>:</p><p><span class="math display">$$
\lnot z \land (\lnot(x) \lor \lnot(y))
$$</span></p><p>The upshot is that we now have a simpler expression that uses only NOT, OR and AND. These are the fundamental logic gates thus we are able to construct a circuit that embodies the logic of the expression.</p><blockquote><p>This is important and is an instance of the general theorem that <em>any Boolean function</em> can be represented using an expression containing AND, OR and NOT operations</p></blockquote><p>But even this is too complex. We could get rid of the OR and just use AND and NOT:</p><p>We can prove this theorem by showing that an expression with AND, NOT, and OR can be formulated as an equivalent expression using just NOT and AND:</p><p><span class="math display">$$
x \lor y = \lnot(\lnot(x) \land \lnot(y))
$$</span></p><table class="ui table"><thead><tr><th><span class="math inline">\(x\)</span></th><th><span class="math inline">\(y\)</span></th><th><span class="math inline">\(x \lor y\)</span></th><th><span class="math inline">\(\lnot(\lnot(x) \land \lnot(y)\)</span></th></tr></thead><tbody><tr><td>0</td><td>0</td><td>0</td><td>0</td></tr><tr><td>0</td><td>1</td><td>1</td><td>1</td></tr><tr><td>1</td><td>0</td><td>1</td><td>1</td></tr><tr><td>1</td><td>1</td><td>1</td><td>1</td></tr></tbody></table><p>Finally, we can simplify even further by doing away with AND and NOT and using a single <a href="Logic_gates.md#nand-gate">NAND gate</a> which embodies the logic of both, being true in all instances where AND would be false: <span class="math inline">\(\lnot (x \land y)\)</span>.</p><p>Lets prove the theorem that every logical expression can be formulated as a NAND function. To do this we need to show that both NOT and AND can be converted to NAND.</p><p>NOT:</p><p><span class="math display">$$
\lnot(x) = x \lnot\land x
$$</span></p><p>AND:</p><p><span class="math display">$$
x \land y = \lnot(x \lnot\land y)
$$</span></p></div></article><nav class="ui attached segment deemphasized bottomPane" id="neuron-tags-pane"><div><span class="ui basic label zettel-tag" title="Tag">logic</span><span class="ui basic label zettel-tag" title="Tag">nand-to-tetris</span><span class="ui basic label zettel-tag" title="Tag">propositional-logic</span></div></nav><nav class="ui bottom attached icon compact inverted menu blue" id="neuron-nav-bar"><!--replace-start-9--><!--replace-end-9--><a class="right item" href="impulse.html" title="Open Impulse"><i class="wave square icon"></i></a></nav></div></div><!--replace-end-6--><!--replace-end-3--><!--replace-end-2--><div class="ui center aligned container footer-version"><div class="ui tiny image"><a href="https://neuron.zettel.page"><img alt="logo" src="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" title="Generated by Neuron 1.9.35.3" /></a></div></div></div></body></html>